## PHY 341 HW Ch.1b

Do problems 1.14, 1.17 (a-c), 1.16*; plus the following ( $*=$ optional bonus):

## q1-4

Download and run the program avg-freefall.ipynb discussed in class and available on the course site. Once it's working, modify it to calculate $\left\langle x^{2}\right\rangle$. You need to make only a minimal change to the for loop to accomplish this. Calculate the uncertainty $\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$, and compare it with the results from Problem 1.2.
Also attach a histogram graph of $\left\langle x^{2}\right\rangle$.
q1-5
The wave function of a particle of mass $m$ is given by $\Psi(x, t)=A \exp \left(-\alpha x^{2}-i \beta t\right)$, where $A, \alpha, \beta$ are positive constants. Hints: use the integral formula sheet on the course website (or the back cover).
(a) Find the normalization constant $A$.
(b) Find the potential energy $V(x)$ by substituting $\Psi(x, t)$ into the Schrödinger equation.
(c) Compute $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle$, and $\left\langle p^{2}\right\rangle$.
(d) Find the uncertainty $\sigma_{x} \times \sigma_{p}$, and comment on the result.

## q1-6

The wave function $\Psi(x, 0)$ at $t=0$ is given by

$$
\Psi(x, 0)=c_{1} \psi_{1}(x)+c_{2} \psi_{2}(x)+c_{3} \psi_{3}(x),
$$

where $\psi_{j}$ are stationary states with energies $E_{j}$, and $c_{j}$ the expansion constants $(j=$ $1,2,3$ ), respectively.
(a) Is $\Psi(x, 0)$ a stationary state? Why?
(b) Write down the wave function at later times $t$.
(c) If a measurement of energy is made, what are the possible values?

Hints: For Problem 1.14, use the identity on the formula sheet or consult Eq. (1.25).

