PHY 341 HW Ch.2a

Do problems 2.4, 2.5; plus the following:

q2-1 Given the definitions of the lowering and raising operators,

$$a_{\pm} = \frac{\mp ip + m\omega x}{\sqrt{2\hbar m\omega}},$$

show that

$$a_+a_- = \frac{\hat{H}}{\hbar\omega} - \frac{1}{2},$$

where $\hat{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$.

q2-2

Let $\psi_1(x)$ and $\psi_2(x)$ be the normalized stationary states with energies E_1 and E_2 , respectively. The wave function $\Psi(x,0)$ at t=0 is given by

$$\Psi(x,0) = c_1 \psi_1(x) + c_2 \psi_2(x).$$

(a) If $c_1 = \frac{1}{2}$, find c_2 that makes $\Psi(x, 0)$ normalized, assuming c_2 is real and positive.

(b) Find the expectation value of energy. Does it depend on time for t > 0?

(c) Calculate the expectation value of position $\langle x \rangle$. Express your answer in terms of \bar{x}_1 , \bar{x}_2 , and \bar{x}_{12} , defined as (no need to evaluate)

$$\bar{x}_1 = \int \psi_1^* x \psi_1 \, dx, \quad \bar{x}_2 = \int \psi_2^* x \psi_2 \, dx, \quad \bar{x}_{12} = \int \psi_1^* x \psi_2 \, dx.$$

Does $\langle x \rangle$ depend on time for t > 0?

q2-3

Numerical exploration of Problem **q2-2**. Now assume the states are the first two states of a particle in a box. Use the same coefficients c_1 and c_2 , write down of wave function $\Psi(x,t)$. Then follow the sample Jupyter code at https://jwang.sites.umassd.edu/p341/ for superposition of states, plot the probability density $|\Psi(x,t)|^2$ at different times. Use atomic units (a.u.), where the constants $m = \hbar = a = 1$. Argue, based on the graph, that $\Psi(x,t)$ is not a stationary state, and the expectation value $\langle x \rangle$ depends on time.

For bonus, plot the real and imaginary parts of $\Psi(x,t)$. In Python this can be done as Psi.real and Psi.imag. Comment on your observations.

Extra credit for the fearless: Numerically check that the normalization $N = \int_0^a |\Psi(x,t)|^2 dx = 1$ holds for arbitrary t. Follow the sample code for normalization at the course link. Plot both N and N - 1 vs time on separate graphs.

You can submit the results and graphs, or email me the code if it contains animation.

Let f = f(x) be a differentiable function. By acting each commutator on a test wave function ψ , show that (a) [f, x] = 0;

(a) [f, x] = 0, (b) $[f, p] = i\hbar f'$; (c) $[x, fp] = i\hbar f$.

https://jwang.sites.umassd.edu/p341/