PHY 341 HW Ch.3a

Do problems 3.4; plus the following (${ }^{*}=$ optional bonus):

q3-1

For each of the following wave functions, sketch it and determine whether it is a Hilbert space wave function $(a>0,-\infty<x<\infty)$:
(a) $A \exp (-a x)$; (b) $A \sin (k x)$; (c) $A \exp \left(-a x^{2}\right)$; (d) $A / \sqrt{-x}$; (e) $A \exp \left(-a|x|^{2}\right) / x^{1 / 4}$.

q3-2

Which of the following operators are Hermitian? Briefly explain. $d / d x, d^{2} / d x^{2}, i x, a_{+}, a_{-}, a_{+} a_{-}, i \partial / \partial t$.

q3-3

Consider a particle in the box with ψ_{n} as the stationary states.
(a) Determine whether ψ_{n} are eigenfunctions of the Hamiltonian H, momentum \hat{p}, position \hat{x}, and momentum squared \hat{p}^{2}.
(b) Are H and \hat{p}^{2} mutually compatible? What about \hat{p} and \hat{p}^{2} ? Briefly explain.
q3-4
Calculate the following inner product:
(a) $\langle a \mid b\rangle$ and $\langle b \mid a\rangle$, where $a=[1,3,2 i,-2]^{T}, b=[-i,-1, i, 1]^{T}$.
(b) $\langle f \mid g\rangle$ where $f=e^{i k x-x} \sin 2 x, g=e^{i k x-x}, 0 \leq x<\infty$, and k is real.
q3-5 Earlier we proved $[f(x), \hat{p}]=i \hbar f^{\prime}$ in q2-4. Now prove this explicitly in momentum space. Hint: Let $\Phi=\Phi(p)$ be a test wave function in momentum space, and $\Phi^{(n)} \equiv \frac{\partial^{n} \Phi(p)}{\partial p^{n}}$. First show that $(p \Phi)^{(n)}=p \Phi^{(n)}+n \Phi^{(n-1)}$, then expand $f(x)$ as a Taylor series, such that $[f(x), p]=\sum_{n} c_{n}\left[x^{n}, p\right]$ with $c_{n}=d^{n} f /\left.d x^{n}\right|_{x=0} / n$!. Noting $x=i \hbar \partial / \partial p$, calculate the commutator of the n-th term with p, namely $\left[x^{n}, p\right] \Phi$. Finally reverse the sum as the Taylor series of the desired result.

