PHY 341 HW Ch.3b

Do problems 3.7(a), 3.17, plus the following.

q3-6

(a) Let $\hat{Q}=-\frac{d^{2}}{d \phi^{2}}$ where ϕ is the azimuthal angle between 0 and 2π. Is \hat{Q} Hermitian? If so, find its eigenfunctions and eigenvalues. If no, why?
(b) Do the same if $\hat{Q}=i \frac{d^{2}}{d \phi^{2}}$.

q3-7

Consider the complete basis set $|n\rangle$ representing the nth eigenstate of the SHO, with $n=0,1, \cdots$. Let $\left|\Psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle-i|2\rangle)$ and $\left|\Psi_{2}\right\rangle=\frac{1}{\sqrt{6}}(|0\rangle-2|1\rangle+i|2\rangle)$.
(a) Find the projections $a_{n}=\left\langle n \mid \Psi_{1}\right\rangle$ and $b_{n}=\left\langle n \mid \Psi_{2}\right\rangle$. (b) Write down $\left|\Psi_{1}\right\rangle$ and $\left|\Psi_{2}\right\rangle$ as column vectors and $\left\langle\Psi_{1}\right|$ and $\left\langle\Psi_{2}\right|$ as row vectors. (c) Find $\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle,\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle$, and $\left\langle\Psi_{2} \mid \Psi_{2}\right\rangle$. Is $\left\langle\Psi_{2} \mid \Psi_{1}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle^{*}$? Is it zero and what does it mean? (d) Predict, without explicit calculation, whether $\langle x\rangle=\left\langle\Psi_{1}\right| x\left|\Psi_{1}\right\rangle$ and $\langle p\rangle=\left\langle\Psi_{1}\right| p\left|\Psi_{1}\right\rangle$ should be zero. Write down your predictions (really, on your honors). (e) Calculate $\langle x\rangle$ and $\langle p\rangle$. You do not have to complete the calculations fully, and can stop as soon as whether a null result can be ascertained. Compare your results with the predictions, and discuss discrepancies, if any.

q3-8

Consider a two-state basis set consisting of the ground and first excited states of the SHO, $|1\rangle \equiv\left|\psi_{0}\right\rangle$ and $|2\rangle \equiv\left|\psi_{1}\right\rangle$, respectively. Assume an operator $U=\alpha x$. (a) Construct the matrix representation of $U_{m n}=\langle m| U|n\rangle$ with $m(n)=1,2$. Use existing results as much as possible (e.g. from the previous problem). (b) Find the eigenvalues and eigenvectors of U. Confirm that the eigenvectors are orthogonal.

q3-9

In a calculation such as $\langle x\rangle=\langle\Psi| x|\Psi\rangle$, position space is the natural choice, but it does not have to be so. (a) Show that in a complete basis set $|n\rangle,\langle x\rangle=\sum_{m, n} c_{m}^{*} c_{n} x_{m n}$, where $c_{n}=\langle n \mid \Psi\rangle$ and $x_{m n}=\langle m| x|n\rangle$. (b) [bonus] Derive an analogous formula for $\langle x\rangle$ in momentum space in the form of a double integral.

